If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2+7p=14
We move all terms to the left:
2p^2+7p-(14)=0
a = 2; b = 7; c = -14;
Δ = b2-4ac
Δ = 72-4·2·(-14)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{161}}{2*2}=\frac{-7-\sqrt{161}}{4} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{161}}{2*2}=\frac{-7+\sqrt{161}}{4} $
| -5=v/5-4 | | 9(m-2)=-6(m-7) | | 7.9=d+15.2 | | 7w+6=6w+1 | | 7-e=31 | | 3/4=−6e−3/5 | | 7z+4z+4z-(-12)=-18 | | 124=90+7x-71 | | d(d+7);d=2 | | 11x-2=97 | | 7w+6=7w+11 | | F(3)=3.14r^2 | | 6-4x=4x-16 | | 0=27-9(k+3) | | 3(d+1)=2(3d-9 | | -3+m/6=-1 | | 14v-9v-3=12 | | 11+4x=-9-6x | | -31/2=1/2x+1/2x+1/2x | | 7x=-2x+30 | | 8n-1=55 | | 2y+11=7y-15 | | -7-7s=-8s | | 13-3x=2+2x | | 2x+17=6x-19=4x-1 | | 5y-2=3y=10 | | 2.4=-t/5 | | 2x-17=6x-19=4x-1 | | -8s=-7–7s | | 2x+5=x(9) | | -2x+6=8x-4 | | -20=3x-x+4 |